Similarity of Triangles by SSS Criteria


 
 
Concept Explanation
 

Similarity of Triangles by SSS Criteria

Similarity of Triangles by SSS criteria:

Theorem: If the corresponding sides of two triangles are proportional, then the triangles are similar.

Given: large In ;Delta ABC ;and;Delta PQR

                   large frac{AB}{PQ}=frac{BC}{QR}=frac{CA}{RP}

   large To Prove:;Delta ABCsim Delta PQR

Construction: Cut PX = AB and PY = AC and join XY.

Proof: It is given that

large frac{PQ}{AB}= frac{PR}{AC}

Replacing AB with PX and AC with PY

large frac{PQ}{PX}= frac{PR}{PY}

Subtract 1 from both sides

large frac{PQ}{PX}-1= frac{PR}{PY}-1;; Rightarrow ; frac{PQ-PX}{PX}=frac{PR-PY}{PY}

large frac{XQ}{PX}= frac{YR}{PY}Rightarrow ; XY parallel QR                    [Converse of Basic Proportionality Theorem]

Now XY || QR and PQ is the transversal

Therefore large angle X = angle Q;;and;angle Y= angle R   [Corresponding Angles are equal]

Now in large Delta PQR ;and;Delta PXY

large angle P = angle P                            [Common ]

large angle Q = angle X                          [Proved Above]

large angle R = angle Y                           [Proved Above]

Therefore large Delta PQR ;sim ;Delta PXY

large frac{PQ}{PX}=frac{QR}{XY}=frac{PR}{PY}                            ..................(1)

large frac{AB}{PQ}=frac{BC}{QR}=frac{CA}{RP}                            .....................(2)

We know that AB = PX and AC= PY replacing AB and AC in Equation (2)

large frac{PX}{PQ}=frac{BC}{QR}=frac{PY}{PR}                          .....................(3)

From (1) and (3) BC= XY

large In ;Delta ABC ;and;Delta PXY

     AB = PX          [By Construction ]

     AC = PY          [By Construction ]

    BC = XY           [ Proved Above ]

Therefore large ;Delta ABC ;cong;Delta PXY       [By SSS Criterion]

large angle A =angle P

large angle B =angle X=angle Q

large angle C =angle Y=angle R

Hence large Delta ABCsim Delta PQR

 

 

Illustration : Find the value of large angleE.

Solution: large In; Delta ABC; and; Delta DEF

   large frac{AB}{DF}=frac{3.6}{7.2}=frac{1}{2}

     large frac{BC}{EF}=frac{6.1}{12.2}=frac{1}{2}

    large frac{AC}{DE}=frac{4.2}{8.4}=frac{1}{2}              

That islarge frac{AB}{DF}=frac{BC}{EF}=frac{AC}{DE}=frac{1}{2}

So large Delta ABC sim;Delta DFE

Therefore large angle C =angle E

large In;Delta ABC;;angle A+angle B+angle C= 180^0

large 60^0+80^0+angle C= 180^0Rightarrow angle C= 180^0-140^0=40^0

   large angle E=40^0

Sample Questions
(More Questions for each concept available in Login)
Question : 1

The above two triangles are similar by _______________ criteria.

Right Option : B
View Explanation
Explanation
Question : 2

In the figure given below, AD = BC and BD = CA.  Then bigtriangleup ABDcong bigtriangleup CBA by which criteria?

Right Option : A
View Explanation
Explanation
Question : 3

Check whether the two triangles are similar or not. If so, then write the similarity criteria.

Right Option : D
View Explanation
Explanation
 
Video Link - Have a look !!!
 
Language - English
 
 
 


Students / Parents Reviews [20]